GA-140-LL/ GA-140B-LL

Features

- Tetra-functional epoxy is designed for a higher Tg and better dimensional stability and through hole reliability
- High luminance of epoxy contrast with copper for AOI
- General UV Solder mask may be applied simultaneously to both sides increasing productivity

Designation Introduction

GA-140-LL	Single or double side PCB and thin core for multi-layer PCB	ANSI grade: FR-4
GA-140B-LL	Prepreg for multi-layer PCB	ANOI grade. T N-4

Certification UL (File No: E186152)

Model	Min. Thickness	Clad cond. Thickness		Max. Area Diameter	Solder Lts.		UL 94 Flame	мот
	(Inch)	Min. (µm)	Max. (µm)	(mm)	Temp. (℃)	Time (sec)	Class	(°C)
GA-140-LL/ GA-140B-LL	0.002	12	204	50.8	288	30	94V-0	130
	0.015	12	204	50.8	288	30	94V-0	130

Performance List for Laminate (Specification sheet IPC-4101/21)

Characteristic		Unit	Condition	Specificati	on<0.50mm	Specification≧ 0.50mm	
			Condition	Typical Values	SPEC.	Typical Values	SPEC.
Volume Resistivity		MΩ-cm	C-96/35/90	5.81×10 ⁷	$\ge 10^6$	5.81×10 ⁷	$\ge 10^{6}$
Surface Resistivity		MΩ	C-96/35/90	2.33×10 ⁶	$\ge 10^4$	2.33×10 ⁶	$\ge 10^4$
Permittivity (RC42.5%)	At 1MHz	-	C-24/23/50	C-24/23/50 4.8 ≤ 5.4		4.8	≦ 5.4
Loss Tangent (RC42.5%)	At 1MHz	-	C-24/23/50	0.0135	≦ 0.035	0.0135	≦ 0.035
Arc Resistance		Sec	D-48/50+D-0.5/23	126	≧ 60	126	≧ 60
Dielectric Breakdov	wn	KV	D-48/50	-	≧ 40	-	≧ 40
Moisture Absorptio	n	%	D-24/23	0.5	-	0.095	≦ 0.8
Flammability		-	C-24/23/50+E-24/125	C-24/23/50+E-24/125 94 V-0		94 V-0	94 V-0
Peel Strength (HTE 10Z)		Lb/in (N/mm)	After thermal stress 288℃ ×10Sec solder floating	10(1.75) \geq 4.57(0.8)		11 (1.93)	≧ 6(1.05)
Thermal Stress Test		-	288℃×10Sec×6cycle floating	10Sec×6cycle Pass		Pass	Pass
Flowural Strongth	LW	N/mm ²	A	-	-	640	≧ 415
Flexural Strength	CW	N/mm ²	А	-	-	527	≧ 345
CTE-X		PPM/℃		16	-	16	-
CTE-Y		PPM/℃	ТМА	13	-	13	-
	Alpha 1	PPM/℃		-	-	47	
Z-Axis CTE	Alpha 2	PPM/℃	ТМА	-	-	263	
Z-Axis CTE (50~260℃)		%		-	-	3.8	-
Time to DelaminateT260(Copper removed)T288		— Min	ТМА	-	-	23	
			LIVIA	-	-	3	
Td (5% Weight loss)		°C	TGA	302	-	302	-
Glass Transition Temperature		°C	DSC	141	≧130	141	≧130

Note: For specification \geq 0.50 mm, test sample is 1.6mm 1/1; For specification <0.50 mm, test sample is 0.20 mm 1/1.

Normal Size & Thickness

Thickness Inch (mm)	Copper Cladding OZ (μm)	Size Inch mm	Thickness Tolerance
0.002 (0.051)	1/3(12) 0.5(17)	49×36.8 1244×0935	
То	1.0(35) 2.0(70)	49×40.7 1244×1035	IPC-4101 Class C/M
0.125 (3.2)	3.0(105) 4.0(140)	49×42.7 1244×1085	

Note:

- 1. The effective area of laminate is 36" (Grain) ×48", 40" (Grain) ×48", 42" (Grain) ×48".
- 2. Copper cladding type can be selected from HTE, super HTE, double treated, reversed, very low profile or ultra thin copper foil, depended on customer needs.
- 3. Keeping the core and prepreg in the same grain direction is critical to ensure flatness of the multilayer boards. Grain direction is shown on the "Certificate of Conformance".

Performance List for prepreg

Nominal thickness	Glass	Resin Content	Resin Flow (%)	Gel Time (sec)	Volatile Content	Scaled Flow 1 (per pl		
(mm)	Style	(%)	(70)	(000)	(%)	mm	mil	
0.20	7628	50 ± 3	30±5			0.179±0.01	7.0 ± 0.4	
0.20	7628	45 ± 3	23±5	120±20		0.175±0.01	6.9 ± 0.4	
0.10	2116	53 ± 3	30±5		120±20	≦1.5	0.102±0.010	4.0 ± 0.4
0.06	1080	65 ± 3	38±5				0.062±0.0075	2.4±0.3
0.03	106	72 ± 3	37±5			0.044±0.0075	1.7±0.3	

Note: Grace can provide special specifications to meet customers' requirement.

GA-140-LL/ GA-140B-LL

4

Prepreg Storage Requirement

IPC-4101 3.17

Condition 1: Six months when stored at <5°C

Condition 2: Three months when stored at <23°C and <50 % RH

Note:

1. Prepreg should be stored in the absence of a catalytic environment such as UV light or excessive radiation.

2. Prepreg exceeding the shelf life requirements prior to shipment to the user must be retested and recertified to agree upon specifications.

Recommended Press Parameter

- Heating rate suggestions when material temperature range is 90~130°C Heating rate: 1.2~2.5°C/min for 350~400psi pressure Heating rate: 3.2~5.5°C/min for 250~300psi pressure
- 2. Temperature of material reach 170°C must is held for at least 40min to allow epoxy resin to cure fully.
- 3. In order to avoid warpage and twist issue, cooling rate of material suggest to be kept under 1.5° C/min, when the temperature of material is still above 100° C

Note: All values mentioned above are just for reference, clients can modify relative parameters according to the machines and designs.