

Data Sheet

Advanced Circuit Materials

RO3000® Series High Frequency Laminates

RO3003[™], RO3006[™] and RO3010[™] Laminates

Features:	Benefits:		
Low dielectric loss (RO3003 [™] laminates)	Laminates can be used in applications up to 30-40GHz.		
Excellent mechancial properties versus temperature	Reliable stripline and multilayer boards constructions		
Uniform mechanical properties for a range of dielectric constants.	 Ideal for multilayer board designs with a range of dielectric constants. Suitable for use with epoxy glass multilayer board hybrid designs. 		
Stable dielectric constant versus temperature and frequency (RO3003 laminates)	 Ideal for band pass filters, microstrip patch antennas, and voltage controlled oscillators. 		
Low in-plane expansion coefficient (matched to copper).	 Allows for more reliable surface mounted assemblies Ideal for applications sensitive to temperature change Excellent dimensional stability. 		
Volume manufacturing process	Economical laminate pricing.		
Typical Applications:			
Automotive collision avoidance systems	Automotive global positioning satellite antennas		
Cellular and pager telecommunications systems	Patch antennas for wireless communications		
Direct broadcast satellites	Datalink on cable systems		
Remote meter readers	Power backplanes		

RO3000[®] high frequency circuit materials are ceramic-filled PTFE composites intended for use in commercial microwave and RF applications. This family of products was designed to offer exceptional electrical and mechanical stability at competitive prices.

RO3000 series laminates are circuit materials with mechanical properties that are consistant regardless of the dielectric constant selected. This allows the designer to develop multilayer board designs that use different dielectric constant materials for individual layers, without encountering warpage or reliability problems.

The dielectric constant versus temperature of RO3000 series materials is very stable (Charts 1 and 2). These materials exhibit a coefficient of thermal expansion (CTE) in the X and Y axis of 17 ppm/°C. This expansion coefficient is matched to that of copper, which allows the material to exhibit excellent dimensional stability, with typical etch shrinkage (after etch and bake) of less than 0.5 mils per inch. The Z-axis CTE is 24 ppm/°C, which provides exceptional plated through-hole reliability, even in severe thermal environments.

RO3000 series laminates can be fabricated into printed circuit boards using standard PTFE circuit board processing techniques, with minor modifications as described in the application note "Fabrication Guidelines for RO3000 Series High Frequency Circuit Materials."

RO3000 laminates are manufactured under an ISO 9002 certified system.

Chart 1: RO3003 Laminate Dielectric Constant vs. Temperature

The data in Chart 1 demonstrates the excellent stability of dielectric constant over temperature for RO3003 laminates, including the elimination of the step change in dielectric constant, which occurs near room temperature with PTFE glass materials.

Chart 2: RO3006 and RO3010 Laminate Dielectric Constant vs. Temperature

The data in Chart 2 shows the change in dielectric constant vs. temperature for RO3006[™] and RO3010[™] laminates. These materials exhibit significant improvement in temperature stability of dielectric constant when compared to other high dielectric constant PTFE laminates.

Chart 3: RO3000 Series Laminates Dielectric Constant vs. Frequency IPC-TM-650 2.5.5.5.1

12 11 10 RO3010 laminate 9 RO3006 laminate 8 ARO3003 laminate X 7 6 5 Δ 2 0 2 4 6 8 10 12 14 16 18 Freq. GHz

Chart 3 demonstrates the stability of dielectric constant for RO3000 series products over frequency. This stability simplifies the design of broadband components as well as allowing the materials to be used in a wide range of applications over a very broad range of frequencies.

The data in Charts 1, 2 and 3 was produced using a modified IPC-TM-650, 2.5.5.5 method. For additional information, request Rogers' T.R. 5156 and T.M. 4924.

Property	Typical Value ⁽¹⁾			D ' ''			
	RO3003	RO3006	RO3010	Direction	Unit	Condition	Test Method
Dielectric Constant, e _r <i>Process</i>	3.00 ± 0.04	6.15 ± 0.15	10.2 ± 0.30	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5 Clamped Stripline
⁽²⁾ Dielectric Constant, ε _r <i>Design</i>	3.00	6.50	11.20	Z	-	8 GHz - 40 GHz	Differential Phase Length Method
Dissipation Factor, tan δ	0.0011	0.0020	0.0022	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5
Thermal Coefficient of $\boldsymbol{\epsilon}_{\!r}$	13	-160	-280	Z	ppm/°C	10 GHz 0-100°C	IPC-TM-650 2.5.5.5
Dimensional Stability	0.01	0.5	0.5	X,Y	mm/m	COND A	ASTM D257
Volume Resistivity	1012	10 ³	10 ¹²		MΩ•cm	COND A	IPC 2.5.17.1
Surface Resistivity	1011	10 ³	1011		MΩ	COND A	IPC 2.5.17.1
Tensile Modulus	600	2068 (300)	1500	Χ, Υ	MPa	23°C	ASTM D638
Water Absorption	<0.1	<0.1	<0.1	-	%	D24/23	IPC-TM-650 2.6.2.1
Specific Heat	0.9	0.86	0.8		J/g/K		Calculated
Thermal Conductivity	0.50	0.79	0.95	-	W/m/K	80°C	ASTM C518
Coefficient of Thermal Expansion	17 16 25	17 17 24	13 11 16	X Y Z	ppm/°C	-55 to 288°C	ASTM D3386-94
Td	500	500	500		°C TGA		ASTM D3850
Color	Tan	Tan	Off White				
Density	2.1	2.6	2.8		gm/cm3		
Copper Peel Strength	11.6	7.1	9.4		lb/in	1 oz. EDC After Solder Float	IPC-TM-2.4.8
Flammability	V-0	V-0	V-0				UL 94
Lead Free Process Compatible	YES	YES	YES				

Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corporation.

(1) References: Internal T.R.'s 1430, 2224, 2854. Tests at 23°C unless otherwise noted. Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corporation.

(2) The design Dk is an average number from several different tested lots of material and on the most common thickness/s. If more detailed information is required, please contact Rogers Corporation. Refer to Rogers' technical paper "Dielectric Properties of High Frequency Materials" available at http://www.rogerscorp.com/acm.

STANDARD THICKNESS	STANDARD PANEL SIZE	STANDARD COPPER CLADDING
RO3003:	RO3003/RO3006/RO3010:	½ oz. (17µm), 1 oz. (35µm),
0.005" (0.13mm)	12" X 18" (305 X 457mm)	2 oz. (70µm) electrodeposited copper foil.
0.010" (0.25mm)	24" X 18" (610 X 457mm)	
0.020″ (0.50mm)		Other claddings may be available. Con-
0.030" (0.75mm)		tact customer service.
0.060″ (1.52mm)		
RO3006/RO3010:		
0.005" (0.13mm)		
0.010" (0.25mm)		
0.025″ (0.64mm)		
0.050″ (1.28mm)		

CONTACT INFORMATION:

USA:	Rogers Advanced Circuit Materials, ISO 9002 certified	Tel: 480-961-1382	Fax: 480-961-4533
Belgium:	Rogers BVBA - Belgium	Tel: 32-9-2353611	Fax: 32-9-2353658
Japan:	Rogers Japan Inc.	Tel: 81-3-5200-2700	Fax: 81-3-5200-0571
Taiwan:	Rogers Taiwan Inc.	Tel: 886-2-86609056	Fax: 886-2-86609057
Korea:	Rogers Korea Inc.	Tel: 82-31-716-6112	Fax: 82-31-716-6208
Singapore:	Rogers Technologies Singapore Inc.	Tel: 65-747-3521	Fax: 65-747-7425
China:	Rogers (Shanghai) International Trading Co., Ltd (Shanghai Office)	Tel: 86-21-62175599	Fax: 86-21-62677913
China:	Rogers (Shanghai) International Trading Co., Ltd (Beijing Office)	Tel: 86-10-5820-7667	Fax: 86-10-5820-7997
China:	Rogers International Trading Co., Ltd (Shenzhen Office)	Tel: 86-755-8236-6060	Fax: 86-755-8236-6123

The information in this data sheet is intended to assist you in designing with Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.

The world runs better with Rogers. and the Rogers' logo are licensed trademarks of Rogers Corporation. RO3000, RO3003, RO3006, R03010 are licensed trademarks of Rogers Corporation. © 1993, 2002, 2004, 2005, 2010 Rogers Corporation, Printed in U.S.A., All rights reserved. Revised 12/2010, 0892 -1210-.5 CC **Publication** #92-130