DSR-18 Series

Liquid Photoimagible Solder mask ink

1. Product Feature

- 1) Two-component solder mask designed for screen printing
- 2) Develop with a mild alkaline solution. Excellent resolution capabilities.
- 3) Excellent adhesion, heat resistance and chemical resistance.
- 4) Excellent electric characteristic and physical mechanism properties.
- 5) Color and luster stability, abundant in color.
- 6) Utilize import raw material to keep quality steadily.

2. Description and Material Properties

- 1) Type
- 2) Color
 - 3) Viscosity before $mix(PS/25^{\circ}C)$
 - 4) Solids Contents
 - 5) Hardener
 - 6) Ink/Hardener mix ratio
 - 7) Viscosity after mix
 - 8) Pot life of the mixed product
 - 9) Heat resistance
 - 10) Storage shelf-life

G, Y, R, BK, W, BL, N light/middle/dark green, yellow, red, blue, white, black, clear ect. $200 \pm 30(VT-40)$ $80 \pm 5\%$ DSR-18/DSR-10H 75/25 150 ± 30 PS 72 hours 288 °C $\times 10$ sec. $\times 3$ times 6 months

3. Chemical Resistance

Chemical Properties	Immersion time	Result
Iso propenol	Room temperature	Normal
	2 minutes	
Isopropenol 75%	46 °C 2 minutes	Normal
sulfuric acid 10%	Room temperature	Normal
	30 minutes	
hydrochloric acid 10%	Room temperature	Normal
	30 minutes	
sodium hydroxide 10%	Room temperature	Normal
	30 minutes	
Toluene	Room temperature	Normal
	30 minutes	
1,1,1 Trichloroethane	Room temperature	Normal
	30 minutes	
Ethanol amine	Room temperature	Normal
	30 minutes	

Delada Electronic Materials Co., LTD

4. Physical Properties

Item	Performance	Test Condition
Coating Pencil Hardness	≧6H	IPC-SM-840B 3.5.1.2. (Mitsubishi
		Pencil)
Grind resistance	Normal	IPC-SM-840B3.5.1.1
Adhesion	Normal	IPC-SM-840B(adhesion to Gold or
		Nickel/Tin surface)
Machinability	Normal	IPC-SM-840B 3.5.3. Visual inspect
		in drilling and punching
Flammability	UL-94V-0	IPC-SM-840B3.6.4.

5. Electronic Characteristics

Item	Performance	Test Condition
Dielectric strength	1000V De/mil	IPC-SM 840B3.8.1
Volume resistance	$1 \times 10^{15} \Omega$	ASTM D-257
Wear resistance	$1 \times 10^{15} \Omega$	ASTM D-257 IPC-SM 840B 3.8.2.
Insulation Resistance	$1 \times 10^{15} \Omega$	Class 1 35°C 90%RH 4 days
	$1 \times 10^{15} \Omega$	Class 2 50°C 90%RH 7 days
	$1 \times 10^{15} \Omega$	Class 3 25-65 °C 90%RH 7-day
		cycle
Dielectric capacitance	3.1	JIS C6481 1MHz
Dielectric Loss Tangent	0.02	JIS C6481 1MHz

6. Process Sequence

Process Sequence	Condition	
Board Preparation	Acid clean and abrasive brush.	
Base/hardener mixing	Thoroughly mix the material by hand or by mechanical	
	mixer until a homogenous blend is produced.	
Hold the material	\geq 20 minutes	
Coat Side A	36-51T mesh. After coating, hold 10 minutes is required	
Dry Side A	15-20 minutes at 75 ℃	
Coat Side B and Hold	The same as coat side A	
Exposure	300-500mj/cm2, 10-12 step when using a 21 step Stouffer	
	Step Tablet.	
Hold	10 minutes	
Development	1% sodium carbonate monohydrate solution at 30° C, time	
	is 45-55 sec., and spray pressure is 1.5-2kg.	
Curing	60 minutes at 150℃	

Note: 1. If using a double-sided screen process, pre-drying should be processed 40-45 minutes at 75° C.

- 7. During the screen print process, please pay attention to the follows:
 - I Environment Requirement : Screen print and exposure step should be processed in clean room at $22\pm3^{\circ}$ C with relative humidity between 55-65%. In addition, Exposure of ink to sunlight or white fluorescent tubes directly/indirectly may cause photo polymerization, so light with UV output should be avoided.
 - I The ink cannot be used until it returns to room temperature. Before using, it should be mixed with hardener in the right ratio thoroughly and hold for a period of time.
 - I The optimum mask thickness is 20-25 µ m. Thin mask thickness will decrease the performance of heat, chemical and gold plating resistance, while heavy thickness will exhibit too much undercut and dry degree decreased by insufficient exposure energy penetrating.
 - Adhesive plaster cannot be used during coating to avoid dent on board caused by residue.
 - I Try to avoid print the mask into component hole. If some inks leak-in, additional developing time should be added for eliminating unclean in hole development.
 - I Drying conditioner and tolerance will be varied depending on difference oven type and the number of panels in oven; therefore the suitable parameter must be determined experimentally.
 - I Since exposure will be varied according to the base materials and the thickness of the resist, a test for confirming the minimum width of ink residue, luster of surface and sensitization degree should be taken before parameter setting.
 - I The exposure required for dark green, white and black must be increased to avoid crack after developing and post curing, and ruffle post curing.
 - I Insufficient temperature and time will cause unclean in developing. Overtime will cause too heavy undercut, and attacking on mask surface will decrease ink performance. Developer concentrate, temperature, spray pressure and developing time should be controlled strictly. The suitable parameter must be determined experimentally.
 - Soldermask will fall off during HASL process on condition that the lower curing temperature and time was adopted, while excess temperature and time will decrease the compatible to gold plating. The suitable parameter must be determined experimentally.
 - I Curing for the board with via hole tenting should be detached to 30-40minutes at 80° C and 50minutes at 150° C.
 - I If legend print is needed, you must set proper post cure time to compatible with legend, otherwise, insufficient curing will reduce the performance of coating.
 - I If ENIG is required, you should take ENIG before legend print, otherwise over curing will reduce the performance with electro less Ni/Au plating.
 - Special notice for ENIG
 - 1. Exposure stouffer is 11-13 step.
 - 2. Undercut after developing should less than 1 mil to avoid chemicals attack in the subsequence ENIG process,
 - 3. If exposure is not enough, excess UV cure should be taken after development.

4. Using 36T screen mesh.